88 research outputs found

    Classification of Subsystems for Local Nets with Trivial Superselection Structure

    Get PDF
    Let F be a local net of von Neumann algebras in four spacetime dimensions satisfying certain natural structural assumptions. We prove that if F has trivial superselection structure then every covariant, Haag-dual subsystem B is the fixed point net under a compact group action on one component in a suitable tensor product decomposition of F. Then we discuss some application of our result, including free field models and certain theories with at most countably many sectors.Comment: 31 pages, LaTe

    Conformal nets and KK-theory

    Get PDF
    Given a completely rational conformal net A on the circle, its fusion ring acts faithfully on the K_0-group of a certain universal C*-algebra associated to A, as shown in a previous paper. We prove here that this action can actually be identified with a Kasparov product, thus paving the way for a fruitful interplay between conformal field theory and KK-theory

    Structure and Classification of Superconformal Nets

    Full text link
    We study the general structure of Fermi conformal nets of von Neumann algebras on the circle, consider a class of topological representations, the general representations, that we characterize as Neveu-Schwarz or Ramond representations, in particular a Jones index can be associated with each of them. We then consider a supersymmetric general representation associated with a Fermi modular net and give a formula involving the Fredholm index of the supercharge operator and the Jones index. We then consider the net associated with the super-Virasoro algebra and discuss its structure. If the central charge c belongs to the discrete series, this net is modular by the work of F. Xu and we get an example where our setting is verified by considering the Ramond irreducible representation with lowest weight c/24. We classify all the irreducible Fermi extensions of any super-Virasoro net in the discrete series, thus providing a classification of all superconformal nets with central charge less than 3/2.Comment: 49 pages. Section 8 has been removed. More details concerning the diffeomorphism covariance are give

    From vertex operator algebras to conformal nets and back

    Get PDF
    We consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. We present a general procedure which associates to every strongly local vertex operator algebra V a conformal net A_V acting on the Hilbert space completion of V and prove that the isomorphism class of A_V does not depend on the choice of the scalar product on V. We show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra V, the map W\mapsto A_W gives a one-to-one correspondence between the unitary subalgebras W of V and the covariant subnets of A_V. Many known examples of vertex operator algebras such as the unitary Virasoro vertex operator algebras, the unitary affine Lie algebras vertex operator algebras, the known c=1 unitary vertex operator algebras, the moonshine vertex operator algebra, together with their coset and orbifold subalgebras, turn out to be strongly local. We give various applications of our results. In particular we show that the even shorter Moonshine vertex operator algebra is strongly local and that the automorphism group of the corresponding conformal net is the Baby Monster group. We prove that a construction of Fredenhagen and J\"{o}rss gives back the strongly local vertex operator algebra V from the conformal net A_V and give conditions on a conformal net A implying that A= A_V for some strongly local vertex operator algebra V.Comment: Minor correction

    N=2 superconformal nets

    Full text link
    We provide an Operator Algebraic approach to N=2 chiral Conformal Field Theory and set up the Noncommutative Geometric framework. Compared to the N=1 case, the structure here is much richer. There are naturally associated nets of spectral triples and the JLO cocycles separate the Ramond sectors. We construct the N=2 superconformal nets of von Neumann algebras in general, classify them in the discrete series c<3, and we define and study an operator algebraic version of the N=2 spectral flow. We prove the coset identification for the N=2 super-Virasoro nets with c<3, a key result whose equivalent in the vertex algebra context has seemingly not been completely proved so far. Finally, the chiral ring is discussed in terms of net representations.Comment: 42 pages. Final version to be published in Communications in Mathematical Physic

    Classification of subsystems for graded-local nets with trivial superselection structure

    Get PDF
    We classify Haag-dual Poincar\'e covariant subsystems \B\subset \F of a graded-local net \F on 4D Minkowski spacetime which satisfies standard assumptions and has trivial superselection structure. The result applies to the canonical field net \F_\A of a net \A of local observables satisfying natural assumptions. As a consequence, provided that it has no nontrivial internal symmetries, such an observable net \A is generated by (the abstract versions of) the local energy-momentum tensor density and the observable local gauge currents which appear in the algebraic formulation of the quantum Noether theorem. Moreover, for a net \A of local observables as above, we also classify the Poincar\'e covariant local extensions \B \supset \A which preserve the dynamics.Comment: 38 pages, LaTe

    From Vertex Operator Algebras to Conformal Nets and Back

    Get PDF
    We consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. We present a general procedure which associates to every strongly local vertex operator algebra V a conformal net A_V acting on the Hilbert space completion of V and prove that the isomorphism class of A_V does not depend on the choice of the scalar product on V. We show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra V, the map W→A_W gives a one-to-one correspondence between the unitary subalgebras W of V and the covariant subnets of A_V. Many known examples of vertex operator algebras such as the unitary Virasoro vertex operator algebras, the unitary affine Lie algebras vertex operator algebras, the known c = 1 unitary vertex operator algebras, the moonshine vertex operator algebra, together with their coset and orbifold subalgebras, turn out to be strongly local. We give various applications of our results. In particular we show that the even shorter Moonshine vertex operator algebra is strongly local and that the automorphism group of the corresponding conformal net is the Baby Monster group. We prove that a construction of Fredenhagen and Jörss gives back the strongly local vertex operator algebra V from the conformal net A_V and give conditions on a conformal net A implying that A = A_V for some strongly local vertex operator algebra V

    Thermal States in Conformal QFT. II

    Get PDF
    We continue the analysis of the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on the real line. In the first part we have proved the uniqueness of KMS state on every completely rational net. In this second part, we exhibit several (non-rational) conformal nets which admit continuously many primary KMS states. We give a complete classification of the KMS states on the U(1)-current net and on the Virasoro net Vir_1 with the central charge c=1, whilst for the Virasoro net Vir_c with c>1 we exhibit a (possibly incomplete) list of continuously many primary KMS states. To this end, we provide a variation of the Araki-Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is an inclusion of split nets A in B and A is the fixed point of B w.r.t. a compact gauge group, then any locally normal, primary KMS state on A extends to a locally normal, primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case, we show that the free Fermi model admits a unique KMS state.Comment: 36 pages, no figure. Dedicated to Rudolf Haag on the occasion of his 90th birthday. The final version is available under Open Access. This paper contains corrections to the Araki-Haag-Kaster-Takesaki theorem (and to a proof of the same theorem in the book by Bratteli-Robinson). v3: a reference correcte

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde
    • …
    corecore